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Three models for constructing topologically related pairs of molecular isomers 
are discussed at length. The topological-effect-on-molecular-orbitals (TEMO) 
theorem is presented in detail and illustrated with experimental data; this 
theorem demonstrates that molecular topology imposes constraints in the 
form of general interlacing rules on the MO energy patterns of topologically 
related molecules. Further, non-empirical SCF MO calculations have been 
performed for topologically related o- and p-divinylbenzenes, difluoroben- 
zenes, benzoquinones, and benzoquinodimethanes in standard and optimized 
geometries using various basis sets. In most cases, the SCF ~--MO eigenvalue 
patterns of topological related isomers are in complete agreement with the 
TEMO theorem, thus demonstrating the dominant influence of topology on 
the ~r-MO energies. A modified version of  the generalized perturbational- 
variational Rayleigh-Ritz (PV-RR) procedure is described which is used to 
study the occasional observed deviations from the TEMO predictions; this 
procedure had been combined with the concept of critical ,~ (i.e. the threshold 
value of the perturbation parameter A at which the TEMO order of a pair of 
MO eigenvalues starts to invert), thus enabling us to analyze in quantitative 
detail the physical factors which compete with molecular topology in con- 
ditioning the ab initio MO energy patterns. 
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I. Introduction 

The constitutional formula of a chemical compound expresses the types of 
constituent atoms and the pattern of chemical bonds existing among them. 
Further, the topology of the molecule [1] is delineated by the constitutional 
formula where the latter is represented by simple graphs. Thus, formally, the 
molecular topology is fully described by the discrete topological space (i.e. a 
Hausdorff space) associated with the chemical constitution of the molecule 
considered [2]. In the case of planar, fully conjugated molecules, the adjacency 
matrix of the hydrogen-suppressed graph defined in this Hausdorff subspace is 
isomorphic with the matrix of an effective one-electron Hamiltonian, termed 
topological, operating on the ~'-electron functions which neglects all interactions 
except for the tight-binding ones, where the latter are assumed to be equal for 
all pairs of atoms; these two matrices differ only in scaling. All of the eigenvalues 
of this topological Hamiltonian are, of course, simultaneously present as the 
roots of the associated characteristic poloynomial. Thus, by a global analysis of 
the relationship between the characteristic polynomials of different chemical 
systems, one can draw significant conclusions about the topological eigenvalues 
of the corresponding Hamiltonians. 

The goal of this paper is to extend and unify our previous related work [2-7] by 
(i) discussing in detail the constraints imposed on the eigenvalue spectra by the 
molecular topology, and by (ii) investigating quantitatively the relationship 
between the topological and physical factors which compete in conditioning the 
actual (i.e. ab initio) eigenvalue patterns. 

Our study is conducted within the framework of non-empirical HF SCF MO 
calculations augmented in a novel manner by a modified form of the generalized 
perturbational-variational Rayleigh-Ritz (PV-RR) procedure [8]. 

To illustrate our procedure, we consider the 7r-electron MO eigenvalues of several 
representative planar, topologically related isomers. The separate consideration 
of ~--MO eigenvalues is feasible since the Fock matrix, in its final iterated form, 
decomposes into tr- and ~--blocks. Although we focus our attention on r 
eigenvalues alone because of their smaller number, it should be noted that the 
essence of the topological approach is the same for both or- and ~r-electrons [2, 3]. 

In general, one proceeds by comparing the spectra of pairs of molecules which 
are topologically related in terms of a specified topological model. We say [3] 
that two molecules are "topologically related" if the topological spaces associated 
with them may be partitioned into subspaces (corresponding to molecular frag- 
ments, or partial structures) which are pairwise isomorphic so that the difference 
of the two topological spaces arises solely from the neighborhood relations 
between the subspaces. This implies that topologically related molecules differ 
only in the connection of pairwise identical partial structures. The general manner 
in which a pair of topologically related molecules may be constructed is termed 
a "topological model"; several such models have been described [3, 4, 9]. Further, 
it has been shown [4] that the topological MO eigenvalues of topologically related 
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molecules necessarily satisfy a general interlacing theorem termed the topological- 
effect-on-molecular-orbitals (TEMO) theorem. 

The experimental and calculated results presented in this work, as well as previous 
comparisons with experimental data [3-5] and MO calculations [5-7], satisfy 
these topologically-founded predictions with astonishing fidelity; this we interpret 
as evidence for the fundamentality of the linkage between topology and physics 
presented here. Further, our findings constitute an important justification for the 
earlier use of topological methods in quantum chemistry [10-13]. 

This paper is organized as follows: In Sect. 2, the TEMO theorem is presented 
and illustrated by experimental data for examples of the three topological models 
treated. Sect. 3 describes our computational methods: In Sect. 3.1, some details 
of the non-empirical SCF calculations are summarized; in Sect. 3.2. and Appendix 
A, the generalized PV-RR formalism is modified and combined with refined 
Rayleigh-SchrSdinger (RS) perturbational radii-of-convergence considerations 
[14] so that it can be effectively applied to the study of TEMO. Sect. 4 presents 
our computed results. In Sect. 5, these and some additional results are discussed 
and interpreted, and, finally, in Sect. 6 our conclusions are given. 

2. The T E M O  theorem 

Consider two bivalent partial structures A and B with the inequivalent centers 
of residual valences denoted by a and b in A, and by c and d in B. A topologically 
related pair of molecules is formed by suitably connecting A and B with one 
another: The so-called 6 e isomer is obtained by linking a with c and b with d, 
and the S" isomer by linking a with d and b with c. 

The characteristic polynomials ~P of the b ~ and ~- isomers in the framework of 
Hiickel theory are given by 

~ ( b  ~) = r - d p ( A  - a ) d g ( B  - c) 

- a l p ( A -  b )rb(  B - d )  + dg( A - a - b )cP( B - c -  d )  

-2[Y~ qb(A- P~b)][2 dP(B - P~d)], 

~ ( ~ r )  = d p ( A ) d P ( S )  - c P ( A  - a ) r b ( B  - d )  

- r  - b )cb(  B - c)  + r  A - a - b )c~(  B - c - d )  

-2[Y~ qb(A- P~b)][E ~ P ( B - P c d ) ] ,  

(1) 

(2) 

where qb (A), �9 (A - a ) , . . . ,  and cb ( B  - Pea ), respectively, denote the characteristic 
polynomials of the partial structure A, of the structure obtained from A by 
removing the vertex a , . . . ,  and of the structure obtained from B by removing 
the paths P connecting the vertices c and d; in Eqs. (1) and (2), the summation 
runs over all the respective paths P. The function A(x) defined by 

A(x) -- ~(J-) - dp(Se), (3) 
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is given in the present case by 

A(x) = [O(A - a)  - ~b(A - b)][qb(B - c) - r  - d ) ] ;  (4) 

here, x denotes the energy considered as a cont inuous  real variable. 

The simplest topological  model  for construct ing 5e and 3- isomers considers 
i somorphic  partial structures, A o  B; this means that  A and B may be mapped  
bijectively onto  each other,  where the bijections a o c and b ~ d are contained 
in the mapping.  It follows that O ( A - a ) =  d p ( B -  c), O ( A - b ) =  q b ( B - d ) ,  and, 
hence, (4) takes the form 

A(x) = [ O ( A -  a)  - O ( A -  b)] 2--- 0. (5) 

Consequent ly ,  

0 (3 - )  _ O(5D), - o o < x < o o .  (6) 

This implies [4] that  (i) in the closed intervals [X~k-1, X~k] defined by the eigen- 
values x f  o f  50, there are exactly two eigenvalues o f  if, x~_ l  and x2~, and (ii) 
in the open  intervals (x~k, ~ x2k+l), located between the closed ones, there are no 
eigenvalues o f  E-. The above conclusions can be condensed  to the following 
interlacing rule: 

<_ x f  <_ <_ <_ . . . <_ <_ x L _ ,  <_ x L  <_ <7) 

Table 1. The PE spectra [eV] of tetraphenol ethers, [16] 

I a li a 
5 ~ J 90 J 

7.82 7.45 
8.04 8.02 
8.50 8.51 

8.69 9.05 b 
9.80 9.86 

9.82 10.46 
10.14 

a See Fig. 1 for specification of 5 e and if- pairs. 
b Center of a broad band: 8.95-9.14 

X X 

X X 

S T 

(X: OCH 3 ) [ 

o-u 

S T 

(Y: CH2) II 
Fig. 1. ,7 and ~- pairs pertaining to model  1 
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This inter lacing rule (7) has been  proved  r igorously [15] and exhibits the topologi-  
ca l -effect -on-molecular-orbi ta ls  (TEMO)  theorem in its s implest  form. 

To illustrate the theorem,  Table  1 displays the photo-e lec t ron  (PE) spectra  of  
two 5 e and  3- pairs,  namely ,  the methyl  and cyclic methylene  ethers, respectively,  
o f  te t raphenols  (Fig. 1), recently measured  in our  l abora tory  [16]. With the 
a s sumpt ion  of  the validi ty of  K o o p m a n s '  theorem,  the PE spectra  reveal  the 
uppe r  par t  o f  the energy d iagrams of  occupied  MO's .  Hence ,  compar i son  of  the 
PE spectra  is the most  r igorous exmper imen ta l  test o f  TEMO.  As seen f rom Table  
1, the T E M O  theorem impress ively  survives this examinat ion.  

Another  more  complex  topological  model  [9] considers three part ial  structures 
A, B, and C. Here,  A and B are taken to be i somorph ic  part ial  s tructures with 
the inequivalent  centers o f  residual valence denoted  by a and b, a t tached to the 
centers u and  v, respectively,  o f  the part ial  s tructure C. The ow isomer  contains 
the bond  sequences  a - u - a and b - v - b, while 3- cor responds  to the sequences 
a - u - b and  b - v - a. In  this case, A(x) takes the form 

A(x) = qb( C - u - v ) [ ~ ( a  - a ) - qb(a  - b)] 2. (8) 

Evidently,  selection of  the part ial  structure C so that  q b ( C - u - v ) - 0  for  all x 
forces sat isfact ion of  A(x)  _> 0 in the whole  range of  x [in ana logy  with (5)], and  
the T E M O  theorem (7) then holds wi thout  restriction. Benzo[c]phenanthrene  
(ow) and chrysene  (3-) il lustrate (Fig. 2) a pa i r  o f  molecules  topologica l ly  related 
by this model .  

Fig. 2. 0 ~ and 3- pa i r  per ta ining to 
mode l  2; the part ial  s tructure C is 
del ineated by dot ted lines 

a L---"3 

S r 

Table 2. The PE spectra" [eV] of benzo[c]phenanthrene (5 ~ and 
chrysene (if), [17] 

a The experimental accuracy is given to • eV 

5O O- 

7.59 
7.60 
8.02 

8.10 
8.68 

8.98 
9.18 

9.43 
9.72 

9.96 
10.22 

10.52 
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The corresponding PE spectra collected in Table 2 are seen to be in excellent 
agreement with the TEMO theorem (7). 

One may construct topologically related molecules in a manner similar to the 
model leading to (5) and (7), but, in contrast to the latter, the isomorphism of 
the partial structures is not assumed. Accordingly, A(x) is given in this case by 
(4). Due to the bilinear form of (4), h(x) need not be non-negative in the whole 
range of x. It follows that the TEMO theorem (7) now applies in intervals defined 
by successive real roots of h(x) = 0, where inversions of the characteristic pattern 
(7) occur in these successive intervals. The real roots of h(x)=  0 are termed 

i and inversion points and denoted here by x~. Let xi xi+l be two subsequent 
inversion points, and let h(x) be negative in the interval x e (x[, I xi+O. Then, 
TEMO imposes in this case the following eigenvalue pattern: 

3 
�9 "" ~ X 2 k _  3 ~ X 2 k _  3 ~ X~2k_2 ~ X f k _  2 ~ X~ 

~. X~2k_l ~ X f k _  I ~ X f k  ~ X ~2k ~ . . . ~ X~+ 1 

<<-xf.,_, < - x ; . , _ , < - x ; . , < - x f . , < -  . . .  (9) 

This situation is illustrated by the pair of isomers in Fig. 3. 

The PE spectra of these compounds are collected in Table 3, and, as anticipated 
from (4), display two intervals where TEMO inverts the sequence of the MO 
eigenvalues. 

The topological models which satisfy the conditions leading to (5), (8), and (4) 
are, respectively, termed models 1, 2, and 3. These three models can be further 
generalized to 5e and 9- pairs made up of multivalent partial structures. In such 
cases, Eqs. (4), (5), and (8) correspondingly generalize to more complicated 
expressions [19] where again A(x) need not be non-negative in the whole 
range of x. This implies that TEMO then consists of intervals bounded by 
successive inversion points where inversions of the eigenvalue patterns (7) occur 
in these intervals, i.e. the molecular topology imposes in these cases the eigenvalue 
pattern (9). 

0 , ,  

0 
H2 ~ C H 2  

/I 0 l I 

S T Fig. 3. 5e and ff  pair pertaining to model 3 

5e 3- 
Table 3. The PE spectra [eV] of 1,3-(5Q and 1,2-indandione ( i f) ,  [18] 

9.77 
9.91 

9.98 
10.15 
10.25 
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3. Computational methods for studying TEMO 

3.1. Non-empirical SCF M O  calculations 

The competition between topological and physical factors in conditioning the 
TEMO pattern can be investigated by performing non-empirical SCF MO calcula- 
tions for selected pairs of O ~ and J- isomers; this can be most conveniently 
accomplished by studying isomers belonging to model 1, where no topologically 
induced inversions can occur when the moieties A and B are isomorphic and 
connected by two bonds. This approach is effective because the non-empirical 
SCF Hamiltonian matrix, in contrast to the topological one, considers all interac- 
tions among atoms without any restriction as to their equality. Thus, satisfaction 
of Eq. (7) argues for the dominance of topological factors while inversions of 
the TEMO pattern may be traced to the perturbations due to physical factors. 

The ab initio calculations reported in Sect. 4.1. were performed with the HONDO 
program [20] using the STO-NG minimal-basis set, N = 2 ,  3 , . . . ,  6, [21a]. To 
supplement this, several other basis sets, i.e. double-zeta [21b], 4-31G [21c], and 
MINI-4 [21d], have also been employed in calculations of benzoquinones and 
benzoquinodimethanes; the results of these calculations are reported in Sect. 5. 

The SCF MO method is based on the eigenvalue equation, 

H C  = SCE, ( 10 ) 

where H and S are, respectively, the matrix of the HF operator and the overlap 
matrix, C is the matrix composed of the MO eigenvectors C s, and E is the 
diagonal matrix of the corresponding MO energies e s, where the superscript s 
labels the MO. 

3.2. Modification of  large-order PV-RR  for TEMO analysis 

In the event that inversions of the TEMO pattern occur in the non-empirical 
SCF MO calculations, application of the modified large-order PV-RR analysis 
presented in this subsection enables us to identify the physical origins of the 
perturbations on the TEMO patterns and, thus, to dissect in fine detail the 
relationship between the competing topological and physical factors. As in any 
ab initio calculation, the results may to some extent be an artifact of the basis 
set used and of their degree of truncation. When we refer to "physical factors", 
it is with this limitation in mind. Nevertheless, the general method of analysis 
we introduce in this paper is independent of the degree of approximation arising 
from the choice of the basis set. 

Eq. (10) is the starting point for the application of large-order PV-RR [8]. In the 
most general PV-RR procedure, all matrices in (10) are treated as functions of 
a real coupling (perturbing) parameter h ; here h may either be a natural parameter 
which varies discretely or continuously over some range of values, thus charac- 
terizing a family of solutions, or it may be a dummy ordering parameter whose 
only physically significant value is unity. In the study of TEMO, h must be taken 
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as a dummy parameter [6] where the perturbation is introduced by a model- 
inspired partitioning [6, 7] of H. For dummy A, it is both feasible and expedient 
[8b] to eliminate the S matrix by using the Lfwdin [22] symmetric orthonormaliz- 
ation technique. This transformation brings (10) into the canonical form 

/~(~ = (~E; (1 la) 

here, /4 and (~ are, respectively, the transformed H and C, and ~7 satisfies the 
unitary condition 

C*C=I.  ( l ib)  

Since the O ~ and 3- isomers of a given pair yield separate and distinct matrix 
eigenvalue problems, all matrices in (10) and (11) can be appropriately super- 
scripted with 5e or 3-; for brevity, however, we refrain from such superscripting 
since the meaning will always be clear from the context. 

The formally infinite-power series, 

H =  ~ /4jM, (12) 
j=0  

obtained by partitioning/4 (as will be subsequently discussed) is taken as known; 
here, the matrices Hj must be individually Hermitian so that the generalized 
PV-RR remainder theorem [8b] will apply. In practice, /4 is partitioned into a 
finite number of matrices and, hence, the summation of (12) terminates naturally 
at, say, Jth order. In developing the formalism, however, it is preferable to treat 
(12) as being of infinite order and then, subsequently, to effect the required 
reduction for the problem at hand. In any case, the corresponding power series 
i n h  of C a n d E ,  

C =  ~ 4M, E =  ~ EjM, (13a, b) 
j = o  j=0  

are then computed to arbitrarily high order via the PV-RR procedure summarized 
in Appendix A; here, the ~ are composed of the jth-order MO eigenvector 
expansion coefficients C~ and the Ej are diagonal where the elements e~ are the 
corresponding jth-order MO eigenvalue expansion coefficients. 

We now show how the above formalism can be advantageously modified for the 
study of TEMO. Since h is dummy, we are at liberty to parti t ion/4 for both 5e 
and 3- isomers in accordance with topological and/or physical arguments into 
p well defined steps: 

/4o+ H,(1)A =/4(1), 

/4(1) +/~,(2)X =/~(2), 

H(p - 1) + H,(p)A =/4(p)  =/4, 

where/ql(q)A represents the total perturbation of the qth step. 

(14) 
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Here, we select /qo so that it resproduces the TEMO pattern (7) described in 
Sect. 2. This means that/qo must represent an effective tight-binding Hamiltonian 
operating in the topological subspace of the ~r-electron functions in which all 
diagonal elements are assigned one common value and all non-zero off-diagonal 
elements are assigned another. In practice, the elements of Ho are constructed 
by suitably averaging the appropriate elements of the 5 e and J" HF SCF/q  as 
described in detail in Appendix B. Due to the different topological structure of 
the ow and 3- isomers, Ho evidently also differs for these isomers. 

To gain insight into the behavior of the TEMO pattern under perturbations due 
to various physical HI(q)A, we apply the PV-RR formalism separately to each 
of the steps (14); criteria for constructing the /ql(q)A are discussed in Sect. 4. 
Note that this stepwise approach in passing from the TEMO /q0 to the SCF 
enables us to examine in detail the effect of the successive perturbations on the 
TEMO pattern. The PV-RR calculations reported in Sect. 4 were performed with 
a modified version of the computer program [23] which implements the formalism 
of (12)-(14) and Appendix A; here, as described in Appendix A, one must set 
the ~ = 0,j  = 2, 3 , . . . ,  in the auxiliary matrices defined in Eqs. (A.6) (A.8), and 
(A.9), in order to reduce the generalized PV-RR formalism to the special case 
of the linearly perturbed /q(q) of (14). 

It is clear that the partitioning scheme of (14) will be effective only if the successive 
perturbations H~ (q), q = 1, 2 , . . . ,  p are sufficiently small so as to induce conver- 
gent PV-RR MO eigenvalue series in each step. The theoretical question of.the 
convergence of RS perturbation series is a difficult one, and, hence, is normally 
disregarded. In most applications, one merely assumes on the basis of qualitative 
arguments that the convergence will be rapid if the perturbation is "small" in 
some imprecisely defined sense. In some cases, however, it is known that 
apparently small perturbations lead to slowly convergent [ 14] or strongly divergent 
[24] RS eigenvalue series. We can deal with this problem quantitatively by using 
the recently introduced method [14] for obtaining accurate estimates of the radii 
of convergence of RS perturbation series: The procedure is applicable to the 
PV-RR expansions of all eigenlevels of any linearly perturbed Hamiltonian, e.g., 
those of (14). In the case at hand, our estimate of the radius of convergence, 
rS(q), of the PV-RR series of the sth MO for the qth perturbational step is given 
in obvious notation [of (14)] by 

r*( q) ~- J e~(q)J{4C~t(q) C~( q)[e~( q)] 2 + [e~( q)]2} -~/2, (15) 

where all the required input data are generated in the first PV-RR cycle. In 
general, the PV-RR series will converge absolutely for [al< rS(q). In the context 
of TEMO, satisfaction of the condition 

rS(q)>> l (16) 

implies that the associated PV-RR series will converge rapidly. Thus, (15) and 
(16) provide an independent theoretical criterion for judging perturbational 
convergence; this supplements the numerical test of summing the PV-RR series 
to sufficiently high order to reproduce the results of conventional diagonalization. 
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4. Results 

4.1. Non-empirical SCF MO studies 

In this paper,  as previously mentioned, we consider the 7r-MO eigenvalues of  a 
number  of  representative planar ~ and J- isomers; here, the eigenvectors of  the 
~- and ~r-MO's are decoupled and we may rigorously treat the latter separately. 
The non-empirical SCF MO calculations have been performed retaining, respec- 
tively, the C2~ and DEh (C2h for p-divinylbenzene) symmetry of the ~ and J- 
isomers. Further, we have restricted ourselves to isomers which belong to the 
topological model 1 so that, in the absence of perturbations, the TEMO theorem 
(7) holds without inversions. Any observed inversions in the TEMO pattern are 
then studied in Sect. 4.2. via the PV-RR analysis. 

Table 4 displays the 7r-MO energies of  the isomers o-divinylbenzene (,9') and 
p-divinylbenzene (~-), as well as o-difluorobenzene (b D) and p-difluorobenzene 
(3-), computed,  respectively, in standard and experimentally determined 
geometries [25] using the STO-3G basis set. 

To investigate the influence of the accuracy of the basis set, the ~r-MO eigenvalues 
and the total energy Etotat were computed for the isomers o-benzoquinone (b ~ 

Table 4. The 7r-MO eigenvalues (a.u.) of: (A) o-divinylbenzene (O ~ 
and p-divinylbenzene (~-), in standard geometry a; (B) o-difluoroben- 
zene (S ~ and p-difluorobenzene (~-), in experimental geometry ~ 

A B 
3 b ~ 3- 

-0.476015 -0.581785 
-0.473431 
-0.383621 

-0.355225 -0.529275 
-0.353537 -0.434270 

-0.311884 
-0.279820 

-0.257418 -0.289781 
-0.227162 -0.266111 

-0.220487 
0.203578 

0.211541 0.247896 
0.240706 0.255351 

0.266981 
0.307425 

0.360743 0.482836 
0.362925 

0.538339 

0.402823 
0.533450 

-0.566475 
-0.545391 

-0.424011 
-0.301642 

-0.258287 
0.243637 

0.259370 
0.482729 

a See [25] for geometrical parameters 
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Table 5. The ~'-MO eigenvalues and total energy, Etotal, in a.u., of o-benzoquinone (6 a) and 
p-benzoquinone (9-); STO-NG calculations, standard geometry 

STO-2G STO-3G STO-6G 
b ~ 9- 5 e 9- 5e 9- 

-0.509207 -0.535570 -0.538540 
-0.502984 -0.528679 -0.531682 
-0.432476 -0.462495 -0.466219 

-0.391973 -0.423362 -0.427661 
-0.369586 -0.396472 -0.400329 

-0.319570 -0.346245 -0.350777 
-0.257881 -0.293150 -0.298710 

-0.242021 -0.273626 -0.279056 
0.177389 0.136229 0.129836 

0.179806 0.138212 0.131139 
0.318441 0.278161 0.269349 

0.350040 0.303807 0.294638 
0.355484 0.309602 0.300379 

0.385799 0.333370 0.323759 
0.543760 0.485971 0.474184 

0.547740 0.489038 0.477270 

-363.266957 a -363.265115 a -374.341579 a -374.3415078 -377.995664 a -377.995426 ~ 

a Etotal 

and p -benzoqu inone  (9-) using s tandard geometry  [25] and the basis sets STO-NG,  
N = 2 ,  3, 6; these results are presented in Table 5. 

The influence o f  the molecular  geometry was then studied by comput ing  the 
7r-MO energies and Etota I for  the same set o f  5e and 3- isomers but  now allowing 
for geometry  opt imizat ion in the STO-3G basis. The STO-3G opt imized geometry 
was then used in S T O - N G  calculations for N = 2, 4, 5, 6. These calculations are 
systematized in Table 6. 

As a fur ther  test o f  the effect o f  varying N, we have also calculated the gross 
a tom popula t ions  o f  the benzoquinone  isomers in opt imized geometry  for STO- 
N G ,  N =  2, 3 , . . . ,  6; the results are collected in Table 7, the atoms being indexed 
as in Fig. 4. 

Finally, Table 8 collects the ~r-MO energies and Eto ta  I of  the 5r and 9- benzo- 
qu inodimethanes  computed  in s tandard geometry  for STO-NG,  N =  2, 3, and 6. 

It will be noted that the data collected in Tables 4 and 5 are in exact accord with 
the T E M O  theorem (7). In  Table 6, however,  the pat tern is normal  for  N = 2, 
but  for  N - >  3, two inversions points,  denoted  generically by X~k, k = 1, 2, appear  
in the region of  virtual orbitals;  the posi t ion o f  the X~k is invariant at x~v~ ~ 0.08, 
x~v2 ~ 0. ! 6, in the entire range f rom N = 3 to N = 6. Further,  in Table 8, a single 
stably located inversion point  x ~  = - 0 . 4 . . .  appears  in the region o f  occupied 
orbitals for  all N considered.  The physical  origin o f  these inversions is studied 
in the fol lowing subsection. 
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Table 7. Benzoquinones: Gross atomic populations with STO-NG, 2-<N-<6; optimal geometry 

Atom STO-2G STO-3G STO-4G STO-5G STO-6G 

1 a 1 8.1276 8.1888 8.1982 8.1993 8.1991 
2 5.8678 5.8329 5.8247 5.8233 5.8234 
3 6.0570 6.0804 6.0827 6.0815 6.0813 
4 6.0251 6.0525 6.0533 6.0518 6.0516 
5 0.9606 0.9209 6.9185 0.9201 0.9203 
6 0.9618 0.9245 0.9225 0.9241 0.9243 

2 a 1 8.1364 8.2024 8.2123 8.2133 8.2131 
2 5.8427 5.8141 5.8050 5.8032 5.8035 
3 6.0507 6.0725 6.0746 6.0734 6.0732 
4 0.9597 0.9193 0.9168 0.9183 0.9185 

a See Fig. 4 for indexing of atoms in the two molecules 

Fig. 4. The numbering of the atoms in o- and 
p-benzoquinone 

s 01 

0 
1 2 

Table 8. The ~'-MO eigenvalues and total energy, Etotal, in a.u., of o-benzoquinodimethane (5r and 
p-benzoquinodimethane (9-); STO-NG calculations, standard geometry; x~i denotes the inversion 
points 

STO-2G STO-3G STO-6G 

-0.449086 -0.463564 -0.464692 
-0.448898 -0.462872 -0.464414 

-0.447497 -0.444017 -0.462356 
-0.344181 -0.356040 -0.362163 

-0.322789 -0.339028 -0.341584 
-0.318015 -0.334344 -0.337100 

-0.305918 -.317533 -0.325560 
-0.198066 -0.203487 -0.221607 

-0.183816 -0.203380 -0.207698 
-0.201354 0.176918 0.171431 

0.213662 0.182181 0.183681 
0.346932 0.305279 0.308887 

0.364117 0.332594 0.324815 
0.372129 0.340478 0.332432 

0.400141 0.364449 0.358151 
0.559846 0.514629 0.505754 

0.562356 0.518629 0.508081 

-294.856870 b -294.870558 b -303.774030 b -303.780069 b -306.762095 b -306.775572 b 

Inversion points 
b Etotal" 
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4.2. PV-RR studies of  TEMO inversions 

To reconstitute the "history" of TEMO inversions, we have found it advantageous 
[6, 7] to specialize (14) to the case of p - 2  steps as follows: In the first perturba- 
tional step, we take 

/4(1) =/4o + H,(1)A, (17) 

where Ho has been previously defined in Sect. 3.2. and Ht(1))t introduces the 
actual SCF tight-binding interactions1'2; then the second perturbational step is 
given by 

H(2)  = H(1)  +/4,(2))t  -- H, (18) 

where /4(1) ,  (17), is now used as the zero-order Hamiltonian matrix and/~1(2))t 
accounts for the non-nearest-neighbor interactions. 2 Full details of the construc- 
tion of /4 t (1)  and H1(2) are given in Appendix B. As previously ment ioned,due  
to the different structure of the b ~ and ~- isomers, there is a different set of 
matrices in (17) and (18) for each of these isomers. We may summarize the 
content of (17) and (18) by noting that/~o introduces the topological constraint 
which leads to TEMO, and H~(1) and/41(2) introduce the physical factors (i.e. 
chemical nature and geometrical location of  the atoms, and non-nearest-neighbor 
interactions, respectively) which compete in conditioning the SCF MO eigen- 
value pattern. 

The PV-RR procedure in conjunction with (17) and (18) was applied to the 
benzoquinone and benzoquinodimethane isomers using, respectively, the data 
corresponding to Tables 6 and 8 as input. In all cases, the perturbational conver- 
gence of the PV-RR 7r-MO eigenvalue series was rapid and the calculations were 
carried out to sufficiently high order to reproduce the results of conventional 
numerical diagonalization to full accuracy (e.g., for the STO-6G benzoquinone 
data, the PV-RR series through 5th and 13th order yielded, respectively, an 
accuracy of 10 -6 and 10-1~ The convergence of these series was also verified 
independently by computing their radii of convergence rS(q) via (15). 

For the benzoquinone isomers with STO-6G data as input, the PV-RR rr-MO 
eigenvalue series obtained for the first perturbational step, (17), conform com- 
pletely to the TEMO theorem (7), i.e. generate no TEMO inversions in any order 
and, hence, are not presented explicitly. The PV-RR ~'-MO eigenvalue series for 
the second perturbational step, (18), summed through nth order, n = 0, 1, . . . ,  5, 
are collected in Table 9; it should be noted that the sum of the (effectively) 
infinite-order series resulting from the first perturbational step, (17), coincides 

1 Due to the SCF procedure used to compute the HF MO energies, Eq. (10), the H elements 
corresponding to the tight-binding interactions contain some contribution from non-nearest-neighbor 
interactions; we estimate, however, the weight of this contribution to be marginal. 
z In the present work, we have verified by comparison of H and /4 that for ~r-electrons, the 
orthonormalization procedures of [22] only slightly modifies the original basis set in transforming 
(10) to (lla). 



Effect of  molecular  topology on n-molecular-orbital energies 77 

with the unperturbed (n = 0) MO eigenvalue entries for the second perturbational 
step, (18). 

It is seen from Table 9 that the two SCF inversion points x6~1 and x6/2 of Table 
6 do indeed appear in this second step. In Table 10, the influence of  the basis 

Table 9. Benzoquinones:  Summat ion of ~--MO PV-RR eigenvalue series in a.u., through nth order 
i 

of  second perturbational step (optimal geometry, STO-6G input);  x, denotes the inversion points 

n = 0  n = l  n = 2  
I 5r 5r I 3- 5e '3- ~ xi  x l  

-0.557362 -0.523454 -0.524046 
-0.553500 -0.520983 -0.521507 
-0.462062 -0.461052 -0.461082 

-0.422020 -0.427944 -0.428499 
-0.400092 -0.402817 -0.402739 

-0.350053 -0.356267 -0.356267 
-0.270827 -0.311683 -0.311921 

-0.247823 -0.288253 
0.088289 

0.132057 0.138179 
0.133278 0.138367 

0.156840 
0.290404 0.282709 

-0.288100 

0.138493 

0.299363 0.297780 0.298167 
0.300273 0.299012 0.299331 

0.079853 
0.138209 

0.161875 
0.282709 

0.307919 0.312000 0.312762 
0.452832 0.465087 0.465088 

0.453489 0.465194 0.465277 

n =3 n = 4  n = 5  
i j 5e I ~ Y x[ J Y xi x~ 

-0.524097 -0.524104 -0.524106 
-0.521528 -0.521530 -0.521530 
-0.461082 -0.461082 -0.461082 

-0.428581 -0.428597 -0.428600 
-0.402707 -0.402700 -0.402698 

-0.356267 -0.356267 -0.356267 
-0.311897 -0.311897 -0.311896 

-0.288997 -0.287983 -0.287980 
0.080198 0.079886 

0.138209 0.138209 
0.138493 0.138498 0.138498 

0.161941 0.162207 
0.282709 0.282709 

0.298181 0.298181 0.298181 
0.299316 0.299317 0.299317 

0.079799 
0.138209 

0.162248 
0.282709 

0.465272 0.465273 0.465273 

0.312759 0.312761 0.312760 
0.465088 0.465088 0.465088 
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Table 10. Benzoquinones,  optimal geometry: The influence of basis set on radii of  convergence of 
second perturbational step 

5e isomer 3- isomer 
rS(2) STO-2G STO-3G STO-6G STO-2G STO-3G STO-6G 

r~(2) 8.2 8.3 8.4 14.1 14.8 14.9 
r2(2) 5.3 5.5 5.5 60.8 61.4 64.0 
r3(2) 2.3 2.5 2.4 co oo 
r4(2) 1.8 1.6 1.5 7.4 8.6 8.8 
r5(2) 20.5 22.7 22.4 60.7 61.6 64.2 
r6(2) 16.8 17.4 17.6 oo oo co 
r7(2) 13.7 12.3 12.2 16.5 15.5 15.4 
r8(2) 9.2 13.6 13.9 27.6 96.1 73.7 

set on the convergence properties of the PV-RR ~--MO eigenvalues is investigated 
by collecting the rS(2) for the benzoquinone isomers in optimized geometry 
computed with STO-NG, N= 2, 3, and 6. 

Finally, for the benzoquinodimethane isomers with STO-3G data as input, the 
PV-RR ~r-MO eigenvalue series for the second perturbational step, summed 
through nth order, n -- 0, 1 , . . . ,  4, are presented in Table 11 ; the corresponding 
rS(2) are also tabulated. It will be noted from Table 11 that the SCF inversion 
point x~ of Table 8 is generated during this second perturbational step; as in 
the case of the benzoquinone isomer, TEMO inversions do not appear in the 
first perturbational step, and the corresponding PV-RR zr-MO eigenvalue series 
summed through infinite order are entered under the n = 0 heading. 

5. Discussion 

We can gain insight into the interplay between molecular topology and physics 
by discussing and interpreting the various interesting features which emerge from 
a study of the non-empirical SCF and PV-RR results in Tables 4-11. 

(i) It is seen from Table 4 that the MO eigenvalue patterns for the divinylbenzene 
and difluorobenzene isomers obey the TEMO theorem (7) in, respectively, stan- 
dard and experimental geometries. Evidently, for these isomers, physically 
induced perturbations are negligible and the topological constraints (5) imposed 
by model 1 predominate. 

(ii) Tables 5 and 6 show, however, that the situation is quite different for the 
benzoquinone isomers. Thus, in standard geometry (Table 5) no inversion occurs 
and, further, this result is independent of the basis set considered. We conclude 
that topology predominates in standard geometry. On the other hand, in optimized 
geometry (Table 6), as previously mentioned, the TEMO pattern obeys (7) only 
for N -- 2, but two stably located inversion points appear in the range 3 -< N -  < 6. 
We interpret these findings by noting that in optimized geometry the surroundings 
of each atom in the two molecules are less similar than in the case of standard 
geometry; in addition, the physical factors are not held constant in passing from 
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b ~ to 3- and compete with topology in determining the eigenvalue spectrum; 
moreover, the non-equality of various interactions (i.e. among nearest- and 
non-nearest-neighbors) is accentuated by the incongruence of the geometries of 
partial structures in the geometrically optimized 5r and 3- isomers. All of these 
factors argue that, in general, physically induced perturbations become more 
significant in optimized geometry. The failure of TEMO inversions to occur for 
the STO-2G calculations in optimized geometry may be attributed to the reduced 
accuracy of this basis [21a]. This is in parallel trend with the values of Etota  ! in 
Table 6 where there is a large gap between the poor results obtained for N = 2 
and the considerably improved, closely bunched results for N - 3 ;  further 
evidence of this effect is furnished by the gross atom populatibns presented in 
Table 7 where it is seen that the STO-2G calculations indicate significantly less 
polarized electronic structures as compared with the STO-NG, 3 - < N -  < 6. 

From this, and the stable TEMO inversion pattern for 3-< N-< 6, it is tempting 
to conjecture qualitatively that the TEMO pattern (7) represents the limiting 
behavior on passing from accurate (physically oriented) to less accurate (topologi- 
cally oriented) basis sets. 

(iii) Disregarding for the moment the question whether the inversions depend 
upon the choice of the basis set, we now investigate the origins of the TEMO 
inversions using the example of benzoquinone isomers displayed in Table 6. This 
is done by means of the PV-RR analysis of the STO-6G data presented in Table 
9. As previously mentioned, inspection of Table 9 reveals that the first perturba- 
tional step has no effect on the TEMO pattern (7), but the second perturbational 

I step does indeed generate the two SCF inversion points x6~ and x6~2 in the range 
of virtual orbitals (cf. Table 6). Moreover, the location of these inversion points 
is already correctly and stably established by the first-order perturbational correc- 
tion (n= 1) of (18) to the eigenvalues of /q(1); higher-order perturbational 
corrections in (18) merely bring about greater numerical accuracy in the values 
of the X~k but do not change the associated pattern. The standard physical 
intepretation of the first-order perturbation energy then leads to the following 
conclusion: The TEMO inversions exhibited in the STO-6G representation by 
the 5 ~ and 3- benzoquinone ~r-MO eigenvalue spectra are due to the averaged 
effect of the significant and possibly non-equal non-nearest-neighbor interactions. 
Further, our results also clearly prove that the perturbing influence of the actual 
SCF nearest-neighbor interaction on the TEMO pattern is negligible in this case. 
In addition, as may be seen from the data in Table 10, the perturbational 
convergence of all PV-RR series to the proper limit is assured since in the majority 
of cases, the very strong condition (16) is fulfilled, while in the few remaining 
cases, r'(q)> 1 by a comfortable margin; in this context, it is interesting to note 
that increasing the accuracy of the STO-NG basis set by varying N .has only a 
negligible effect on the convergence properties of the series. Thus, we have proved 
that, in the framework of the minimal STO-NG basis set, the ab initio calculations 
for the benzoquinone isomers in optimized geometry simulate the variant of 
topological model 1 where A and B are isomorphic but multivalent partial 
structures. These results are in accord with our earlier conclusions [7] based only 
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on STO-NG data. The very small energy difference (about 0.0003 a.u.) between 
the (LUMO) orbitals of the b ~ and J- isomers raises the possibility that the TEMO 
inversions located at Xll =0.08 and x~--~0.16 a.u. (Table 6) may be due to the 
choice of the STO-NG basis set. This possibility prompted us to repeat these 
calculations employing the more flexible 4-31G [21c] and double-zeta [21b] basis 
sets; it is seen from these results, which are presented in Table 12, that no TEMO 
inversions occur. 

Thus, the comparison of Table 6 and 12 suggests that the two inversion points 
observed in STO-NG calculations are actually due to the insufficient flexibility 
of this basis; we return to this point later in this section. 

(iv) Now consider the PV-RR analysis of the STO-3G data for the 9 ~ and 3- 
isomers of the benzoquinodimethanes presented in Table 11. The results of Tables 
8 and 11 for the benzoquinodimethane isomers are, respectively, qualitatively 
similar to those of Tables 6 and 9 for the benzoquinone isomers except that for 
the former isomers only a single inversion point X3~l appears, located this time 
in the range of occupied orbitals. Once again, the first perturbational step has 
no influence on the TEMO pattern (7), while the first-order perturbational 
correction of the second perturbational step correctly and stably generates the 
SCF location of this single inversion point. By exactly the same arguments, it 
follows that the TEMO inversion in the case of the benzoquinodimethanes is 
also due exclusively to the averaged effect of the significant and possibly non-equal 
non-nearest-neighbor interactions. Finally, inspection of the rS(2) collected in 

Table 12. The ~--MO eigenvalues and total energy, Etotal, in a.u., of o-benzoquinone 
(5 e) and p-benzoquinone ( J )  

4-31G Double-zeta 

-0.598532 -0.606892 
-0.596083 
-0.551438 

-0.519167 -0.527075 
-0.475125 -0.482799 

-0.420461 
-0.412278 

-0.366859 -0.374389 
0.002564 -0.009322 

0.004581 
0.136380 

0.154527 0.131881 
0.164060 0.145689 

0.177475 
0.334892 

-0.604399 
-0.560157 

-0.428476 
-0.420440 

-0.005370 
0.111551 

0.161089 
0.301960 

0.339386 0.312243 

-378.654095 a -378.666190" -379.100113 a -379.113753 a 
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Table 1 1 confirms the rapid perturbational convergence of all PV-RR series to 
the correct limit in this case as well. By repeating the above ab initio calculations 
employing two different basis sets, i.e. 4-3 1G and MINI-4, we have verified (Table 
13) that the MO energy patterns shown in Table 8 are invariant under this change 
of the basis set. By symmetry-constraint geometry optimizations (i.e. C2 for the 
5 ~, and D2h for the 3- isomer), allowing for non-planarity of the 50 isomer, we 
have also verified that the TEMO inversion located at x I-~ -0.4 a.u. is not due 
to the steric strain induced by coplanar C H  2 units. In the C2 geometry, optimized 
for 5r the exocyclic C-C  bonds deviate from planarity by an angle of  about 3 ~ 
and the planes of the methylene units rotate conrotatorically a few degrees. The 
4-31G calculations with these optimized geometries exhibit the same TEMO 
~--MO energy pattern as do all the other calculations presented above. 

Thus, we conclude that in the case of benzoquinodimethanes, the averaged effect 
of the non-nearest-neighbor interactions represents the physical factors which 
compete with the molecular topology in conditioning the r energy pattern. 

(v) We return now to the STO-3G calculations of  benzoquinones and ben- 
zoquinodimethanes 50 and 3-pairs. For all MO eigenvalues of the 5 ~ e qS, and 3- 
isomer, e q~, o n e  may calculate via the PV-RR procedure the corresponding power 
series in A, 

eq~(A)= ~ e]~M, ~ = 5 0  or J-. (19) 
j=o  

In practice, the summation of (1 9) terminates when the desired numerical accuracy 
q~ . . . .  

of e is achieved. Despite the fact that due to Eq. (14), only A = 1 has physacal 
significance, in what follows we will formally consider A as a continuous variable, 
and, consequently, e q~ (A) as a continuous function. Note that a TEMO inversion 
observed in the ab initio spectra implies that the qth ~r-MO eigenvalues of 50 
and 3- have crossed in the interval A ~ [0, 1] passin~g from the topologically 

q~: 
determined eigenvalues, eo , to the ab initio ones, e q . Such a crossing implies 
that eq~(A) - eq~(A) = e q ( A )  = 0. For the purpose of  the present paper, we restrict 
our considerations only to positive zeros, Ai, of eq(A),  which reflect the tendency 
of the MO eigenvalues considered to invert. Certainly, from these positive roots, 
only those have significance which are smaller than the radius of convergence. 
Let us call A~rit the smallest positive root of eq (A)=0  which also satisfies the 
condition 

A c r i t < m i n { r  q~, r }; (20) 

h e r e ,  r q~ denotes the radius of convergence corresponding to the power series 
(19). Evidently, Acrit> 1 indicates the tendency of the orbitals in question to 
invert, but the inversion cannot be realized. For the same reason, 0<Acr i t -  < 1 
indicates an effective inversion in passing from topological to ab initio eigenvalues 
of the orbitals considered. 
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The power series (19) corresponding to the orbitals (q = 1, Table 8) which invert 
the order in the case of benzoquinodimethanes are: 

e 1~ = -0.497043 + 0.344983 ( -  1))t 

-0 .313862(-3)  )t 2 _ 0.127939(-4) )t 3 

-0 .665283( -6)h ' ,  (21) 

e l~ = -0.495944 + 0.327288 ( -  1 ) h 

-0 .326310(-  3) h 2 - 0.200885(-4) h 3 

-0.240839( - 5 ) h 4 _ _  0.452625 ( -6)) t  5, (22) 

and the inversion starts to occur at )tcrit = 0.617264. 

In the case of benzoquinones, the corresponding series are (q = 5, Table 6): 

e 5~ = 0.139249 + 0.602139(-2) )t 

+0.131691 ( - 3 ) h  2 + 0.450504(-5) h 3 

-0.946093(-7)A4,~ (23) 

e 5~ = 0.140496 + 0.460968(-2)h 

+0.337030(-4) h 2 - 0.207554(-6)h 3, (24) 

and the inversion starts to occur at hcrit = 0.833244. 

Note that/~crit < 1 by a comfortable margin in the case of benzoquinodimethanes, 
and lies much closer to unity in the case of the benzoquinones. Further, we can 
correlate our results for the benzoquinones in the various basis sets by observing 
that the changes in the relative balance of tight-binding vs. non-nearest-neighbor 
interactions will tend to shift the actual value of  hcrit to values hr 1 more 
readily when this parameter lies closer to unity. By comparing h Crit corresponding 
to (21), (22) and (23), (24) (consider the corresponding slopes toot), one sees 
that it is not surprising that the TEMO inversions observed in the STO-3G 
calculations of benzoquinones vanish on changing the basis set, but they persist 
for the same pair of MO's under this change in the case of benzoquinodimethanes. 

(vi) The calculations reported herein and elsewhere [6,7, 19] reveal that the 
TEMO patterns of the topological Hamiltonians associated with different 5r and 
3- pairs exhibit a wide variety of system-dependent behavior (e.g. no inversions, 
inversions only in the second step, inversiofis in both steps, etc.) in passing to 
the patterns of the corresponding HF SCF Hamiltonians via the perturbational 
steps (17) and (18). As demonstrated above, the present formalism is able to 
detect and identify these effects, but the explanation of their diverse behavior 
remains an open question. For example, chemical intuition anticipates that the 
benzoquinodimethane isomers should undergo a smaller number of TEMO inver- 
sions than the benzoquinone isomers. Nevertheless, the actual SCF calculations 
(cf. Tables 5 and 12, and 8 and 13) reveal that, in fact, the reverse is true; thus, 
the benzoquinodimethanes display an inversion of the lowest-lying orbitals while 
the benzoquinones are in complete accord with the TEMO theorem (7). These 
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results suggest that perhaps such behavior might be traced, via an extension of 
the PV-RR analysis, to the competition between different responses of the 
unperturbed systems to different strengths of the perturbations per se; but this 
requires further investigation. 

(vii) Our perturbational approach is rendered feasible by a combination of two 
essential factors: (1) The TEMO theorem which plays a central role in the 
partitioning of the matrices and the interpretation of the results since it leads to 
an unambiguous choice of the zero-order Hamiltonian matrix with a correspond- 
ing well-defined topologieal eigenvalue pattern; and (2) the unique flexibility of 
PV-RR (see Appendix A for further details) as an analytical tool which permits 
the accurate calculation of all MO eigenvalue perturbation corrections to 
arbitrarily high order for any topologically and/or physically conditioned par- 
titioning of the SCF Hamiltonian matrices, thus enabling one to monitor in a 
continuous manner the passage from topology to physics. 

6. Conclusions 

We have shown analytically that the MO pattern of topologically related molecules 
exhibits a general interlacing rule, i.e. the TEMO theorem (7). Three models of 
selected topologically related pairs of isomers, which have chemical relevance, 
are discussed in detail and illustrated with experimental results. In addition, 
non-empirical SCF MO calculations have been performed for several representa- 
tive pairs of topological isomers. In view of the great diversity in the nature of 
the constituent atoms and the large variation in the geometries of the molecules 
treated, we consider the remarkable agreement between the calculations reported 
herein, as well as of previous results [3-7], with the predicted TEMO behavior 
as evidence of the dominant influence of topology on the electronic structure of 
molecules. 

Application of the PV-RR procedure in conjunction with the non-empirical SCF 
MO calculations has permitted us to dissect in quantitative detail the perturbing 
effect of certain apparently small but significant physical factors on the TEMO 
pattern. We conclude that the PV-RR analysis, coupled with critical h consider- 
ations, yields insight which would be obscured by straightforward numerical 
approaches. In this connection, it should be noted that the unique flexibility of 
the PV-RR procedure as an analytical tool arises from the possibility of partition- 
ing the Hamiltonian matrix in accordance with physical rather than mathematical 
requirements. In conventional RS perturbation theory [26] the reverse is often 
true, because one requires the complete spectrum of the exact zero-order eigen- 
functions of the operator underlying the zero-order Hamiltonian matrix. 

To our knowledge, our approach links, for the first time, the topological features 
of molecules to some of their physical properties in a rigorous and quantitative 
manner. 

Acknowledgment We thank Dr. B. S. Sudhindra for adapting the program which he developed for 
PV-RR calculations. Thanks are also due to Dr. H. Kupka for critically reading the manuscript. 
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Appendix A. Some technical details of the PV-RR formalism 

The appropriate substitution of  (12) and (13) into (11) yields the hierarchy of coupled PV-RR 
equations, 

J 
(I7tgCj_k--C'kEj_k):O, j = 0 ,  1 . . . . .  (A.la) 

k~O 

J 
Z C~dj-k=I6oj, j = 0 , 1  . . . . .  (A.lb) 

k=0 

The initial step consists of solving the zero-order equations, 

Hodo - CoE o = 0, (A.2a) 

Co*d o = I, (A.2b) 

for E o and d o by standard diagonalization where the elements e~ of  E o are the roots of the secular 
determinant, 

[/4o- toil  = 0. (A.2c) 

Note that in the present formalism, it is required that the e~ form a nondegenerate spectrum; for the 
topological isomers studied, we have found this condition to be fulfilled for the zero-order Hamil- 
tonians /4o and IQ(1) of (17) and (18), respectively, when these matrices are constructed as shown 
in Appendix B. 

The Ej, j = 1, 2 , . . . ,  are now determined successively by three independent methods [8b] which afford 
a valuable check on the internal consistency and accuracy of the calculations. The first method, which 
we term the basic PV-RR formalism, follows from premultiplying (A.la) by do*, and also yields as 
output the Cj, j = 1, 2 , . . .  ; the second method exploits the generalized PV-RR Hellmann-Feynman 
theorem; and the third the generalized PV-RR remainder theorem. In all eases, the results are 
expressed compactly by introducing a number of auxiliary matrices which enable the recursive 
concurrent calculation of the RS series of all rn orbitals in one computer run. Thus, one obtains via 
the basic formalism 

Ej = [ p j ] d i a g ,  j = 1, 2 . . . . .  (A.3a) 

Cj = CoQj, j = 1, 2 . . . .  , (A.3b) 

via the Hellmann-Feynman theorem, 

Ej = [ F j ]  diag, j = 1, 2 . . . . .  (A.4) 

and via the remainder theorem, 

E2j = [ R 2 j ]  diag, E2j+I = [R/j+l] di"s, j = 1, 2 . . . . .  (A5a, b) 

where IX] a~g denotes the diagonal matrix constructed from the diagonal elements of  an arbitrary 
square matrix X. The various auxiliary matrices are defined as 

J 
E-- -d ;  2 [ /Ldj-k -- (1-- akj)dkZj-k], j = 1 , 2  . . . . .  (A.6) 

k = l  

O~U=-(eg-e'o)-lP~ u, tCu, j = l , 2  . . . . .  (A.7a) 

[§ O ~ ' ~ - l _ J ,  1 d~dj_k  j = l , 2  . . . .  (A.7b) 
2kk=~ ' ' 

j--1 j--k--I 
Fj=-j ' Y. E (i+l)d*klYI,+ldj-k-i-t, j = l , 2  . . . . .  (A.8) 

k = 0  i=0  
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j j l 
R2j =- X X C~(l~liC2j-l-k -- C2j-i-kEi) 

i --I  k = j - i  

2j 2j - i 

+ ~ ~ C*klTtiC2j_i_k, j =  1,2 . . . . .  (A.9a) 
i = j + l  k=O 

] J 
" t i ~ I  ~ R2j+I ~ '~ ~, C k (  iC21+1 i - k  --  C 2 j + l - i - k E i )  

i=1 k = j + l - - i  

2j+l 2j+l--i 
+ E X " * ' "  CkHiC2j+l_i_k, j = l, 2 , . . .  ; (A.9b) 

i = j + l  k=O 

here, the off-diagonal and diagonal elements of the Qj matrix are given, respectively, by Q~U, (A.Ta), 
and Q~', (A.7b), where the latter impose the orthonormality conditions of (A.lb). Note that both the 
off-diagonal and diagonal elements of the Pj and Qj matrices are required, but only the diagonal 
elements of the ~, R2j , and R2j+j matrices. Note also from the structure of the various auxiliary 
matrices that for j =  1 ,2 , . . . ,  calculation of the Ej from P) and Fj requires a knowledge of the 
lower-order Ck and Ek through k = j - 1  while calculation of the E2j and E2j+l from R2j and R2j+l 
requires only a knowledge of the lower-order Ck and Ek through k =j. The PV-RR calculations of 
(A.3)-(A.9) assume a natural cyclic structure which may be summarized as follows: After the nth 
cycle is completed, the Cj and Ej will have been computed (the latter by three independent methods) 
for j = 1 ,2 , . . . ,  n, and, in addition, the Ej, j = n + l, n + 2 , . . . ,  2n + 1, will have been determined via 
the remainder theorem, (A.5). 

For completeness, in (A.6), (A.8), and (A.9), we have introduced the generalized auxiliary matrices 
corresponding to the infinite-order/4 of (12). This formulation is useful because in some applications, 
one needs to work with /4 of higher order than the linearly perturbed cases of (17) and (18) used 
in the present analysis. Specifically, these generalized auxiliary matrices are brought into the appropri- 
ate form for linearly perturbed/4 [8c] as follows: In (A.6), the summation over terms in/4k reduces 
to the single term in k = 1, C'~/41(~j_1, while the summation over the terms in Ej k is unaffected; in 
(A.8), the summation over i reduces to the single term in i=  0; and in (A.9a) and (A.gb), the first 
double summation over terms in/4~ reduces, respectively, to the single term in i = l, j_IH1Cj and 
(~/41Cj, the remainder of this double summation over terms in E i is unaffected, and the second 
double summation over terms in/41, i = j  + 1, j + 2 , . . . ,  vanishes. Reduction of (A.6), (A.8), and (A.9) 
to the appropriate form for quadratically, cubically, etc., perturbed /~r proceeds analogously. The 
remainder of the PV-RR formalism goes through unchanged; thus, the above remarks concerning 
the cyclic structure of the calculations, the remainder theorem, etc., remain valid regardless of the 
degree of truncation of the A-expansion of/d. 

We complete this Appendix by summarizing those aspects of the PV-RR formalism which render it 
well suited for the perturbational analysis of the physical origins of TEMO inversions. 

The PV-RR procedure is, as the name implies, a method for obtaining the solutions of the variational 
finite-dimensioned matrix eigenvalue equation ( l la)  (or, more generally, (10)) in the form of 
perturbational (Taylor) expansions in powers of A about a corresponding zero-order matrix eigenvalue 
problem (A.2); all higher-order perturbational corrections are given exactly in terms of the PV-RR 
zero-order solutions E o and C o (cf. Eqs. (A.3)-(A.9) of Appendix A), which span the finite-dimensional 
Hilbert subspace of the original problem (l la) .  Since these zero-order solutions can always be 
obtained regardless of the choice of the unperturbed (Hermitian) /4o, for dummy A we can partition 
/4 into /4o and a perturbing remainder A/~r = / 4  -/-to, or equivalently, change the origin of A, in any 
manner we please; further, for the same reasons, we are then at liberty to decompose A/4 into any 
number of successive perturbational steps by shifting the A-origin from/lo to/4(1) , /4(2) ,  etc. in the 
general manner called for by (14), and, in particular, in accordance with the physically conditioned 
requirements of (17) and (18); this degree of freedom in the selection of the PV-RR A-origin is 
crucial to the analysis of TEMO. Finally, the invariant structure of the PV-RR perturbational 
corrections, (A.3)-(A.5), enables the accurate recursive calculation of all PV-RR series to very high 
perturbational order; in this connection, the convergence properties of these series is subject to our 
rigorous control via (15) and (16). 
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Appendix B. Explicit construction of PV-RR TEMO matrices 

The explicit construction of the matrices used in the PV-RR study of TEMO inversions is summarized 
below. Let [Y]Pq, p, q =  1,2, . . . ,  m, denote the elements of an arbitrary m x m  matrix Y; ifi the 
present case (cf. Eqs. (17) and (18)), Y =  Ho, Hi ( l ) ,  H1(2), H, where /4 is that block of the SCF 
matrix which corresponds to the ~'-electron MO. Denote by r c 5 e or r ~ 3 the diagonal elements of 
the matrix corresponding, respectively, to the 9 ~ or ff  isomers, by s t  ~ 5e or s t  ~ ~-  the off-diagonal 
elements corresponding to the tight-binding interactions in b ~ or ~-, and by u v  ~ ,9o or u v  ~ J the 
off-diagonal non-tight-binding elements in 9 ~ or ~-. Evidently, m gives the number  of atoms participat- 
ing in the ~'-system; further, let k represent the number  of bonds among these atoms. Then, the 
following relations are used: 

" rr l f " rr i~lrr~ [/40] = T - - ~  Z [H]  + ~ [  ] j ,  (B.I) 
Z m l r ~ e  r 

[/4ol = ~ - ~  Y [H] + E [ H ] " j ,  (B.2) 

[Ho]UV = 0, u v e S ~  - �9 (B.3) 

Eqs. (B.1)-(B.3) impose only the topological constraints on the MO eigenvalue spectra. The effect 
of the SCF tight-binding interactions is then introduced via 

I/q1(1 )1'~ = [ IQ]'~ - [ho]  '~, r e  b ~ ~-, (B.4) 

[/ql ( 1 )]" = [/q]s' - [Ho]S' , s t ~ S e ,  J ,  (B.5) 

[H,(1)] u~ =0 ,  u v ~  9 ~, J' .  (B.6) 

Note that, of course [ / ~ ] r r ~  [ / ~ ] r r ~  and [ / ~ ] ~ t ~ r  [/~],t~e~. Finally, the non-nearest-neighbor 
interactions are taken into account by writing 

[H1(2)]~ = [/t1(2)]~t = 0, r ~ 6e, ~ - , s t c g ~ , J  - , (B.7) 

[~(2)y ~=[~Y~ uve~e, er. (B.8) 
Clearly, the various matrices are constructed so that for the 90 and J isomers, we have 

/-Io +/q~(1) + /q , (2)  ~-/q. (B.9) 

It follows that  the perturbational corrections introduced via (17) and (18) to the eigenvalues of Ho 
must reproduce the SCF MO eigenvalues, provided that the associated PV-RR series converge; in 
all cases investigated, it has been verified both numerically and theoretically that the above partitioning 
scheme induces perturbational convergence. 
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